Updated on 2025/06/16

写真a

 
HIROSE Minoru
 
Organization
Research Field in Science, Science and Engineering Area Graduate School of Science and Engineering (Science) Department of Informatics Informatics Program Associate Professor
Title
Associate Professor

Research Interests

  • Number Theory

  • Multiple Zeta Value

  • L function

Research Areas

  • Natural Science / Algebra

Research History

  • Kagoshima University   Associated Professor

    2024.10

  • Nagoya University   Institute For Advanced Research   Designated assistant professor

    2021.4 - 2024.9

  • Kyushu University   Faculty of Mathematics   JSPS Research Fellow (PD)

    2018.4 - 2021.3

 

Papers

▼display all

MISC

  • Ohno relation for regularized refined symmetric multiple zeta values

    Minoru Hirose, Hideki Murahara, Shingo Saito

    2024.11

     More details

    The Ohno relation is one of the most celebrated results in the theory of
    multiple zeta values, which are iterated integrals from $0$ to $1$. In a
    previous paper, the authors generalized the Ohno relation to regularized
    multiple zeta values, which are non-admissible iterated integrals from $0$ to
    $1$. Meanwhile, Takeyama proved an analogue of the Ohno relation for refined
    symmetric multiple zeta values, which are iterated integrals from $0$ to $0$.
    In this paper, we generalize Takeyama's result to regularized refined symmetric
    multiple zeta values, which are non-admissible iterated integrals from $0$ to
    $0$.

    arXiv

    Other Link: http://arxiv.org/pdf/2411.15431v1

  • Mixed Tate motives and cyclotomic multiple zeta values of level $2^n$ or $3^n$

    Minoru Hirose

    2024.8

     More details

    Let $N$ be a power of $2$ or $3$, and $\mu_{N}$ the set of $N$-th roots of
    unity. We show that the ring of motivic periods of Mixed Tate motives over
    $\mathbb{Z}[\mu_{N},\frac{1}{N}]$ is spanned by the motivic cyclotomic multiple
    zeta values of level $N$. This implies that the action of the motivic Galois
    group of mixed Tate motives over $\mathbb{Z}[\mu_{N},\frac{1}{N}]$ on the
    motivic fundamental group of $\mathbb{G}_{m}-\mu_{N}$ is faithful. This is a
    generalization of the known results for $N\in\{1,2,3,4,8\}$ by Deligne and
    Brown. We also discuss cyclotomic multiple zeta values of weight $2$ of other
    levels.

    arXiv

    Other Link: http://arxiv.org/pdf/2408.15975v1

  • A discretization of the iterated integral expression of the multiple polylogarithm

    Minoru Hirose, Toshiki Matsusaka, Shin-ichiro Seki

    2024.4

     More details

    Recently, Maesaka, Watanabe, and the third author discovered a phenomenon
    where the iterated integral expressions of multiple zeta values become
    discretized. In this paper, we extend their result to the case of multiple
    polylogarithms and provide two proofs. The first proof uses the method of
    connected sums, while the second employs induction based on the difference
    equations that discrete multiple polylogarithms satisfy. We also investigate
    several applications of our main result.

    arXiv

    Other Link: http://arxiv.org/pdf/2404.15210v1

  • An explicit parity theorem for multiple zeta values via multitangent functions

    Minoru Hirose

    2024.3

     More details

    We give an explicit formula for the well-known parity result for multiple
    zeta values as an application of the multitangent functions.

    arXiv

    Other Link: http://arxiv.org/pdf/2403.14604v1

  • Multitangent functions and symmetric multiple zeta values

    Minoru Hirose

    2024.2

     More details

    In this paper, we give a formula that connects two variants of multiple zeta
    values; multitangent functions and symmetric multiple zeta values. As an
    application of this formula, we give two results. First, we prove Bouillot's
    conjecture on the structures of the algebra of multitangent functions. Second,
    we prove an analogue of the linear part of Kawashima's relation for symmetric
    multiple zeta values.

    arXiv

    Other Link: http://arxiv.org/pdf/2402.13902v1

  • Associators in mould theory

    Hidekazu Furusho, Minoru Hirose, Nao Komiyama

    2023.12

     More details

    By developing various techniques of mould theory, we introduce
    $\mathsf{GARI}(\mathscr{F})_{\mathsf{as}+\mathsf{bal } }$, a mould theoretic
    formulation of Drinfeld's associator set. We give a mould-theoretical
    generalization of the result that associator relations imply double shuffle
    relations, namely, we explain that
    $\mathsf{GARI}(\mathscr{F})_{\mathsf{as}+\mathsf{bal } }$ is embedded to Ecalle's
    set $\mathsf{GARI}(\mathscr{F})_{\mathsf{as}\ast\mathsf{is } }$ which is a mould
    theoretic version of Racinet's double shuffle set.

    arXiv

    Other Link: http://arxiv.org/pdf/2312.15423v1

  • On a lifting of $t$-adic symmetric multiple zeta values

    Minoru Hirose, Hanamichi Kawamura

    2023.11

     More details

    The $t$-adic symmetric multiple zeta value is a generalization of the
    symmetric multiple zeta value from the perspective of the Kaneko-Zagier
    conjecture. In this paper, we introduce a further generalization with a new
    parameter $s$, which we call the $(s,t)$-adic symmetric multiple zeta value.
    Then, the $(s,t)$-adic version of the $t$-adic double shuffle relations,
    duality and cyclic sum formula are established. A finite counterpart of the
    $(s,t)$-adic symmetric multiple zeta value is also discussed.

    arXiv

    Other Link: http://arxiv.org/pdf/2311.00473v1

  • On the asymptotic behavior of the double zeta function for large negative indices

    Minoru Hirose, Hideki Murahara, Tomokazu Onozuka

    2023.3

     More details

    In this paper, we investigate an asymptotic behavior of the double zeta
    function of Euler-Zagier type for indices with large negative real parts.

    arXiv

    Other Link: http://arxiv.org/pdf/2303.04650v1

  • The cyclotomic Grothendieck-Teichmüller group and the motivic Galois group

    Minoru Hirose

    2023.1

     More details

    We show that the level 2 case of the cyclotomic Grothendieck-Teichm\"{u}ller
    groups introduced by Enriquez coincides with the motivic Galois group of mixed
    Tate motives over $\mathbb{Z}[1/2]$.

    arXiv

    Other Link: http://arxiv.org/pdf/2301.04064v1

  • Block shuffle identities for multiple zeta values

    Minoru Hirose, Nobuo Sato

    2022.6

     More details

    In 1998, Borwein, Bradley, Broadhurst and Lison\v{e}k posed two families of
    conjectural identities among multiple zeta values, later generalized by
    Charlton using his alternating block notation. In this paper, we prove a new
    class of identities among multiple zeta values that simultaneously resolve and
    generalize these conjectures.

    arXiv

    Other Link: http://arxiv.org/pdf/2206.03458v1

  • Colored double zeta values and modular forms of general level

    Minoru Hirose

    2022.5

     More details

    Gangl, Kaneko, and Zagier gave explicit linear relations among double zeta
    values of odd indices coming from the period polynomials of modular forms for
    ${\rm SL}(2,\mathbb{Z})$. In this paper, we generalize their result to the
    linear relations among colored double zeta values of level $N$ coming from the
    modular forms for level $N$ congruence subgroups.

    arXiv

    Other Link: http://arxiv.org/pdf/2205.08507v1

▼display all

Presentations

  • Minoru Hirose   Motivic Galois groups and Euler sums   Invited

    Japan-Taiwan Joint Conference on Number Theory 2023  2023.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  • Minoru Hirose   Iterated integrals, motivic Galois groups, and cyclotomic associators   Invited

    66th Algebra Symposium  2021.9 

  • Minoru Hirose   Iterated Integrals along Loops and Cyclic Sum Formula   Invited

    Polylogarithms, Cluster Algebras, and Scattering Amplitudes  2023.9 

  • Minoru Hirose   Euler sums and the cyclotomic Grothendieck-Teichmüller group  

    Number theory lunch seminar (Max Planck Institute for Mathematics)  2023.3 

  • Minoru Hirose   Euler sums and cyclotomic associators   Invited

    Automorphic Forms and Number Theory  2023.1 

  • Minoru Hirose   Double L-values and modular forms of general level   Invited

    Various Aspects of Multiple ZetaValues  2022.5 

  • Cyclotomic multiple zeta values of level 2^n or 3^n  

    2nd Kindai Workshop (Multiple Zeta Values and Modular Forms)  2024.11 

  • Minoru Hirose   Ohno relation for shuffle regularized multiple zeta values  

    Friday Tea Time Zoom Seminar  2021.4 

  • Minoru Hirose   On multiple zeta star values of infinite depth  

    Analytic Number Theory Seminar II  2024.1 

  • On the multitangent functions  

    2025.1 

  • On the discretization of the integral expression of multiple polylogarithms  

    Multiple Zeta Workshop  2024.8 

  • Minoru Hirose   On the dimension of multiple L-values   Invited

    16th multiple zeta work shop  2022.2 

  • On the confluence relations  

    2024.12 

  • Minoru Hirose   Eulerian multiple zeta values and block shuffle relation  

    Mathematical colloquium at Kanazawa University  2022.6 

  • Minoru Hirose   On the multiple L-values of level 2^n   Invited

    Kyushu University multiple zeta seminar  2021.11 

  • Minoru Hirose   On a Yamamoto's integral expression of Schur multiple zeta values   Invited

    17th multiple zeta workshop  2023.2 

  • Minoru Hirose   On the motivic Galois groups and cyclotomic multiple zeta values  

    RIMS Conference "Algebraic Number Theory and Related Topics"  2023.12 

▼display all

Awards

  • Frontiers of Science Award

    2023.7   International Congress of Basic Science   Iterated integrals on P1∖{0,1,∞,z} and a class of relations among multiple zeta values

    Minoru Hirose, Nobuo Sato

Research Projects

  • 新谷ゼータ関数・反復積分・GT理論の3つを軸とした周期の総合的研究

    Grant number:22K03244  2022.4 - 2027.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    広瀬 稔

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

  • 射影直線上の反復積分の研究

    Grant number:18K13392  2018.4 - 2023.3

    日本学術振興会  科学研究費助成事業  若手研究

    広瀬 稔

      More details

    Grant amount:\3380000 ( Direct Cost: \2600000 、 Indirect Cost:\780000 )

    村原氏、斎藤氏との共著論文「Ohno relation for regularized multiple zeta values」をarXivに投稿した。多重ゼータ値が満たす線形関係式として、大野関係式と呼ばれる関係式が知られているが、本論文では正規化多重ゼータ値と呼ばれる多重ゼータ値の拡張に対して、大野関係式を一般化した。
    また、松坂氏、関川氏、吉崎氏との共著論文「Bijective enumerations for symmetrized poly-Bernoulli polynomials」をarXivに投稿した。本論文では対称ポリベルヌーイ多項式と呼ばれる呼ばれる多項式の係数について、その組み合わせ論的解釈を複数与え、またそれぞれの間の全単車について議論を行った。
    また、村原氏、小野塚氏との共著論文「On the linear relations among parametrized multiple series」をarXivに投稿した。パラメトライズド多重級数は多重ゼータ値の一般化であり、巡回和公式と大野関係式を満たすことが五十嵐氏により知られていた。本論文ではパラメトライズド多重級数が、巡回和公式と大野関係式を共に含む線形関係式族である川島関係式の線形部分と呼ばれる線形関係式を満たし、また逆にパラメトライズド多重級数の線形関係式が川島関係式の線形部分でつくされることも証明した。
    また、村原氏、斎藤氏との共著論文「 t-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately」をarXivに投稿した。本論文では、1と3が交互に現れるindexの場合にのt-進対称多重ゼータ値の係数を、特にリーマンゼータの多項式として表される場合について、明示的な表示を与えた。

  • 混合モチーフの周期の研究

    Grant number:18J00982  2018.4 - 2021.3

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

    広瀬 稔

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    前年度までのEuler和の合流関係式の研究を更に推し進め、特にEnriquezの円分的アソシエーターとの関連を研究した。まず、円分的アソシエーターの定義に現れるリー代数の普遍包絡環の双対空間に対して、ケーラー微分の加群のテンソル積の部分加群としての解釈を与えた。また、その加群の元を反復積分の代数的な微分公式から具体的に構成した。また、更にこの元と、アソシエーターの内積を計算することで、Euler和の合流関係式とサイクロトミックな五角関係式を結び付けることができた。これは、多重ゼータ値の合流関係式と五角関係式の同値性を証明した、古庄氏の結果のレベル2類似であるとみなすことができる。またこの結果と、前年度の成果であるEuler和の合流関係式とモチビック関係式の同値性を組み合わせることで、レベル2の場合に円分的グロタンディークタイヒミュラー群がモチヴィックガロア群と一致することを証明することができた。また多重ゼータ値の調和積関係式について、その類似物を色々な反復積分に対して考察した。これにより多重ゼータ値の調和積公式、精密化された対称多重ゼータ値、川島関係式に統一的な視点を与え、さらに精密化された対称多重ゼータ値に関する新しい等式を得た。また、これらの研究成果を、第52回関西多重ゼータ研究会と第14回多重ゼータ研究集会で発表した。また、前年度の佐藤信夫氏との共同研究の成果であるEuler和の合流関係式について、論文の執筆を進め、その第一版をarXivで公開した。