Updated on 2025/09/09

写真a

 
OSADA Shota
 
Organization
Research Field in Education, Law, Economics and the Humanities Area Faculty of Education Teacher Education Course (Mathematics Education) Assistant Professor
Title
Assistant Professor
Contact information
メールアドレス
External link

Research Interests

  • Probbility

  • Ergodic theory

Research Areas

  • Natural Science / Mathematical analysis

  • Natural Science / Basic analysis

  • Natural Science / Applied mathematics and statistics

Research History

  • Kagoshima University   Assistant Professor

    2022.4

Professional Memberships

  • The Mathematical Society of Japan

    2018.10

      More details

 

Papers

  • Shinto Teramoto, Shizuo Kaji, Shota Osada .  The Internal Network Structure that Affects Firewall Vulnerability .  The Law and Ethics of Data Sharing in Health SciencesPart F2045   173 - 198   2023.12Reviewed

     More details

    Authorship:Corresponding author   Language:Japanese   Publishing type:Part of collection (book)   Publisher:Springer Nature Singapore  

    DOI: https://doi.org/10.1007/978-981-99-6540-3_10

    Scopus

    researchmap

  • Hirofumi Osada, Shota Osada .  Ergodicity of unlabeled dynamics of Dyson’s model in infinite dimensions .  Journal of Mathematical Physics64 ( 4 ) 043505 - 043505   2023.4Reviewed

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:AIP Publishing  

    Dyson’s model in infinite dimensions is a system of Brownian particles that interact via a logarithmic potential with an inverse temperature of β = 2. The stochastic process can be represented by the solution to an infinite-dimensional stochastic differential equation. The associated unlabeled dynamics (diffusion process) are given by the Dirichlet form with the sine<sub>2</sub> point process as a reference measure. In a previous study, we proved that Dyson’s model in infinite dimensions is irreducible, but left the ergodicity of the unlabeled dynamics as an open problem. In this paper, we prove that the unlabeled dynamics of Dyson’s model in infinite dimensions are ergodic.

    DOI: 10.1063/5.0086873

    Scopus

    researchmap

  • Shota OSADA .  Isomorphisms between determinantal point processes with translation-invariant kernels and Poisson point processes .  Ergodic Theory and Dynamical Systems41 ( 12 ) 3807 - 3820   2021.12Reviewed

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1017/etds.2020.123

  • Shota Osada .  Tree representations of α-determinantal point processes .  RIMS Kôkyûroku BessatsuB79   33 - 49   2020.4Reviewed

     More details

    Authorship:Corresponding author  

  • Hirofumi Osada, Shota Osada .  Discrete Approximations of Determinantal Point Processes on Continuous Spaces: Tree Representations and Tail Triviality .  Journal of Statistical Physics 170   421 - 435   2018.1Reviewed

     More details

  • Shota Osada .  Fourier expansion and discretizations of determinantal point processes .  RIMS Kôkyûroku2030   77 - 83   2017.5

     More details

    Authorship:Corresponding author   Language:Japanese  

▼display all

MISC

  • Infinite-Dimensional Stochastic Differential Equations and Diffusion Dynamics of Coulomb Random Point Fields

    Hirofumi Osada, Shota Osada

    2025.8

     More details

    We consider the stochastic dynamics of infinite particle systems in
    $\mathbb{R}^d$ interacting through the $d$-dimensional Coulomb potential. For
    arbitrary inverse temperature $\beta>0$ and all dimensions $d\ge2$, we
    construct solutions to the associated infinite-dimensional stochastic
    differential equations (ISDEs). Our main results establish the existence of
    strong solutions and their pathwise uniqueness. The resulting labeled process
    is an $(\mathbb{R}^d)^N$-valued diffusion with no invariant measure, while the
    associated unlabeled process is reversible with respect to the Coulomb random
    point field. Furthermore, we prove that finite-particle systems converge to
    these infinite-particle dynamics, thereby providing a rigorous foundation for
    Coulomb interacting Brownian motion.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2508.21658v3

Presentations

  • Infinite-dimensional stochastic differential equations for Coulomb random point fields  

    44th Conference on Stochastic Processes and their Applications  2025.7 

     More details

    Event date: 2025.7

    Language:English   Presentation type:Poster presentation  

    researchmap

  • On the ergodicity of unlabeled dynamics associated with random point fields  

    Winter Annual Conference on Dynamical Systems 2024(冬の力学系)  2025.1 

     More details

    Event date: 2025.1

    Presentation type:Oral presentation (general)  

    researchmap

  • On the ergodicity of diffusion processes associated with random point fields  

    2024年度確率論シンポジウム  2024.12 

     More details

    Event date: 2024.12

    Presentation type:Oral presentation (general)  

    researchmap

  • On the ergodicity of unlabeled dynamics associated with random point fields  

    2024年度エルゴード理論研究集会  2024.11 

     More details

    Event date: 2024.11

    Presentation type:Oral presentation (general)  

    researchmap

  • On the ergodicity of unlabeled dynamics associated with random point fields  

    Bernoulli-ims 11th World Congress in Probability and Statistics  2024.8 

     More details

    Event date: 2024.8

    Language:English   Presentation type:Poster presentation  

    researchmap

  • On the ergodicity of unlabeled dynamics associated with random point fields   Invited

    Random Fields and Processes on Graphs and Fractals  2024.6 

     More details

    Event date: 2024.6

    researchmap

  • $\beta$-Ginibre点過程の対数微分   Invited

    The 20th Symposium Stochastic Analysis on Large Scale Interacting Systems  2022.9 

     More details

    Event date: 2022.12

    researchmap

  • 点過程の対数微分と無限粒子系のダイナミクス   Invited

    霧島確率論セミナー  2022.9 

     More details

    Event date: 2022.9

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • On the Logarithmic Derivative and Closability of Dirichlet Forms Associated with Point Processes on $\mathbb{R}^d $  

    Probability Seminar(department of mathematics, faculty of science, the national university of Singapore)  2025.2 

     More details

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • Logarithmic derivatives and closability of Dirichlet forms; applications to beta-Ginibre random point fields  

    マルコフ過程とその周辺  2023.2 

     More details

▼display all

Research Projects

  • Rigidity and stochastic dynamics of infinite particle systems to Gaussian random analytic functions

    Grant number:24KK0060  2024.9 - 2030.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (International Collaborative Research)

      More details

    Grant amount:\20930000 ( Direct Cost: \16100000 、 Indirect Cost:\4830000 )

    researchmap

  • 行列式点過程のダイナミクスとIID factor map

    Grant number:22K13931  2022.4 - 2026.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    長田 翔太

      More details

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    researchmap

  • Development, evolution, and new development of stochastic analysis of infinite particle systems

    Grant number:21H04432  2021.4 - 2026.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Grant amount:\41340000 ( Direct Cost: \31800000 、 Indirect Cost:\9540000 )

    researchmap

  • 行列式点過程のウェーブレット解析

    Grant number:01312  2021.4 - 2022.3

    九州大学  QRプログラム  わかばチャレンジ

      More details

    Authorship:Principal investigator 

    Grant amount:\700000

    researchmap

  • 実社会に見られる複雑なネットワークと無限粒子系の交差点Ⅱー複雑ネットワーク上の情報流ー

    2021.4 - 2022.3

    九州大学マス・フォア・インダストリ研究所  IMI共同利用研究 

    森 隆大, 林 晃平, 須田 颯, 上島 芳倫, 新井 裕太, 早川 知志

      More details

    Authorship:Principal investigator 

    researchmap

  • 実社会に見られる複雑なネットワークと無限粒子系の交差点

    2020.2 - 2020.3

    九州大学マス・フォア・インダストリ研究所  IMI共同利用研究  短期共同研究

    森 隆大, 林 晃平, 須田 颯, 上島 芳倫, 新井 裕太, 早川 知志

      More details

    Authorship:Principal investigator 

    researchmap

  • 行列式点過程;離散と連続そして普遍性

    Grant number:18J20465  2018.4 - 2021.3

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    長田 翔太

      More details

    Grant amount:\2200000 ( Direct Cost: \2200000 )

    実軸上の行列式点過程の対数微分の研究を行った.対数微分は点過程の(reduced)Campbell測度の超関数の意味での微分で定義される.また,対数微分は点過程を平衡状態とする無限粒子系を記述する無限次元の確率微分方程式のドリフト項に相当する.対数微分の具体的表示は一般には非自明だが,Gibbs点過程においてはDobrushin-Lanford-Ruelle(DLR)方程式によって,ランダム行列に関連する行列式点過程においては極限形によって具体的表示が知られている.
    本研究では,ユークリッド空間上の点過程に対して相関関数の存在と対数微分の存在を仮定すると,点過程の弱い意味でのGibbs性,つまり任意の有限領域におけるPoisson点過程との絶対連続性が従うことを示した.また,同じ仮定の下で,1次元の場合にはその局所密度関数が連続となり,点過程に対応するDirichlet formの可閉性が従うことを示した.さらに,これらの一般論を実ランダム行列に付随する行列式点過程およびその一般化に適用した.これらの結果を論文にまとめた.
    無限粒子系において,対数ポテンシャルをもつ点過程や,付随する積分作用素のスペクトルが1を含む行列式点過程の場合は,一般には局所密度関数の具体的表示が非自明である.本研究では,DLR方程式のような局所密度関数の具体的表示を避けて,弱い意味でのGibbs性と局所密度関数の連続性に着目することで無限粒子系のダイナミクスが構成できることを示した.特に1次元系においては強力で,付随する積分作用素のスペクトルが1を含む行列式点過程のクラスに適用した.

    researchmap

▼display all