2025/09/18 更新

写真a

カバタ ユウタロウ
加葉田 雄太朗
KABATA Yutaro
所属
理工学域理学系 理工学研究科(理学系) 情報科学専攻 情報科学プログラム 特任准教授
職名
特任准教授
外部リンク

研究キーワード

  • 視覚科学

  • 特異点

  • 最適化問題

  • 曲線と曲面

  • 分布

  • ものづくり

研究分野

  • 自然科学一般 / 幾何学

経歴

  • 統計数理研究所   客員助教

    2023年10月 - 現在

      詳細を見る

  • 統計エキスパート人材育成プロジェクト   第1期研修生

    2021年10月 - 2023年9月

      詳細を見る

  • 長崎大学   情報データ科学部   助教

    2020年6月 - 現在

      詳細を見る

所属学協会

 

論文

  • Ryoya Fukasaku, Kei Hirose, Yutaro Kabata, Keisuke Teramoto .  ALGEBRAIC APPROACH TO MAXIMUM LIKELIHOOD FACTOR ANALYSIS .  Psychometrika   1 - 59   2025年9月査読

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Cambridge University Press (CUP)  

    DOI: 10.1017/psy.2025.10047

    researchmap

  • Algebraic Approach to Ridge-Regularized Mean Squared Error Minimization in Minimal ReLU Neural Network .  arXiv   2025年8月

     詳細を見る

  • Yutaro Kabata, Shigeki Matsutani, Yuta Ogata .  Visualization of curvature on curve and surface by tangential angle parametrization .  arXiv   2025年8月

     詳細を見る

    We propose a unified method to visualize curvature on planar curves and
    surfaces of revolution using the tangential angle parameter. For plane curves,
    placing markers at equal increments of the tangential angle reveals local
    bending features and naturally highlights inflection points and vertices. This
    approach extends to surfaces of revolution, where curvature lines drawn at
    equal tangential angle steps reflect principal curvature variations and
    naturally expose ridge and parabolic curves. Our method provides clear,
    consistent visualizations without arbitrary parameter tuning, offering
    geometric insight for both analysis and design applications.

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2508.13708v1

  • Ryoya Fukasaku, Michio Yamamoto, Yutaro Kabata, Yasuhiko Ikematsu, Kei Hirose .  Algebraic Approach for Orthomax Rotations .      2025年4月

     詳細を見る

    In exploratory factor analysis, rotation techniques are employed to derive
    interpretable factor loading matrices. Factor rotations deal with
    equality-constrained optimization problems aimed at determining a loading
    matrix based on measure of simplicity, such as ``perfect simple structure'' and
    ``Thurstone simple structure.'' Numerous criteria have been proposed, since the
    concept of simple structure is fundamentally ambiguous and involves multiple
    distinct aspects. However, most rotation criteria may fail to consistently
    yield a simple structure that is optimal for analytical purposes, primarily due
    to two challenges. First, existing optimization techniques, including the
    gradient projection descent method, exhibit strong dependence on initial values
    and frequently become trapped in suboptimal local optima. Second, multifaceted
    nature of simple structure complicates the ability of any single criterion to
    ensure interpretability across all aspects. In certain cases, even when a
    global optimum is achieved, other rotations may exhibit simpler structures in
    specific aspects. To address these issues, obtaining all equality-constrained
    stationary points -- including both global and local optima -- is advantageous.
    Fortunately, many rotation criteria are expressed as algebraic functions, and
    the constraints in the optimization problems in factor rotations are formulated
    as algebraic equations. Therefore, we can employ computational algebra
    techniques that utilize operations within polynomial rings to derive exact all
    equality-constrained stationary points. Unlike existing optimization methods,
    the computational algebraic approach can determine global optima and all
    stationary points, independent of initial values. We conduct Monte Carlo
    simulations to examine the properties of the orthomax rotation criteria, which
    generalizes various orthogonal rotation methods.

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2504.21288v1

  • Ken Anjyo, Yutaro Kabata .  A view-parametric extension of the d'Ocagne formula for a surface in $\mathbb{R}^3$ .  to appear in Adv. Stud. Pure Math.   2025年査読

     詳細を見る

    In this paper, we consider the orthogonal projection of a surface in
    $\mathbb{R}^3$ for a given view direction. We then introduce and investigate
    several invariants of the families of the plane curves that locally configure
    the projection image of the surface. Using the invariants, we also show an
    extension of d'Ocagne-Koenderink formula that associates a local behavior of
    the projection image of a surface with Gaussian curvature of the surface.

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2310.05087v1

  • Yutaro Kabata, Hirotaka Matsumoto, Seiichi Uchida, Masao Ueki .  Singularities in bivariate normal mixtures .      2024年10月

     詳細を見る

    We investigate mappings $F = (f_1, f_2) \colon \mathbb{R}^2 \to \mathbb{R}^2
    $ where $ f_1, f_2 $ are bivariate normal densities from the perspective of
    singularity theory of mappings, motivated by the need to understand properties
    of two-component bivariate normal mixtures. We show a classification of
    mappings $ F = (f_1, f_2) $ via $\mathcal{A}$-equivalence and characterize them
    using statistical notions. Our analysis reveals three distinct types, each with
    specific geometric properties. Furthermore, we determine the upper bounds for
    the number of modes in the mixture for each type.

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2410.00415v2

  • Masaru Hasegawa, Yutaro Kabata, Kentaro Saji .  Contact Cylindrical Surfaces and a Projection of a Surface Around a Parabolic Point .  Arnold Mathematical Journal10 ( 4 ) 567 - 584   2024年6月査読

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media LLC  

    We investigate differential geometric properties of a parabolic point of a
    surface in the Euclidean three space. We introduce the contact cylindrical
    surface which is a cylindrical surface having a degenerate contact type with
    the original surface at a parabolic point. Furthermore, we show that such a
    contact property gives a characterization to the $\mathcal{A}$-singularity of
    the orthogonal projection of a surface from the asymptotic direction.

    DOI: 10.1007/s40598-024-00251-y

    arXiv

    researchmap

    その他リンク: https://link.springer.com/article/10.1007/s40598-024-00251-y/fulltext.html

  • Yutaro Kabata, Shigeki Matsutani, Yuta Ogata .  On discrete constant principal curvature surfaces .  Computer Aided Geometric Design111   102289 - 102289   2024年6月査読

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.cagd.2024.102289

    Scopus

    researchmap

  • Yutaro Kabata, Shigeki Matsutani, Yusuke Noda, Yuta Ogata, June Onoe .  A Novel Symmetry in Nanocarbons: Pre-Constant Discrete Principal Curvature Structure .  Geometry, Integrability and Quantization27   25 - 44   2024年査読

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)  

    Since the first-principles calculations in quantum chemistry precisely
    provide possible configurations of carbon atoms in nanocarbons, we have
    analyzed the geometrical structure of the possible carbon configurations and
    found that there exists a novel symmetry in the nanocarbons, i.e., the
    pre-constant discrete principal curvature (pCDPC) structure. In terms of the
    discrete principal curvature based on the discrete geometry for trivalent
    oriented graphs developed by Kotani, Naito, and Omori (Comput. Aided Geom.
    Design, $\bf{58}$, (2017), 24-54), we numerically investigated discrete
    principal curvature distribution of the nanocarbons, C$_{60}$, carbon
    nanotubes, C$_{120}$ (C$_{60}$ dimer), and C$_{60}$-polymers (peanut-shaped
    fullerene polymers). While the C$_{60}$ and nanotubes have the constant
    discrete principal curvature (CDPC) as we expected, it is interesting to note
    that the C$_{60}$-polymers and C$_{60}$ dimer also have the almost constant
    discrete principal curvature, i.e., pCDPC, which is surprising. A nontrivial
    pCDPC structure with revolutionary symmetry is available due to discreteness,
    though it has been overlooked in geometry. In discrete geometry, there appears
    a center axisoid which is the discrete analogue of the center axis in the
    continuum differential geometry but has three-dimensional structure rather than
    a one-dimensional curve due to its discrete nature. We demonstrated that such
    pCDPC structure exists in nature, namely in the C$_{60}$-polymers. Furthermore,
    since we found that there is a positive correlation between the degree of the
    CDPC structure and stability of the configurations for certain class of the
    C$_{60}$-polymers, we also revealed the origin of the pCDPC structure from an
    aspect of materials science.

    DOI: 10.7546/giq-27-2024-25-44

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2306.15839v2

  • 古田 凜太郎, 有村 秀孝, 田中 謙太郎, 加葉田 雄太朗 .  TKI治療後における肺腫瘍成長の経時変化予測モデル .  日本医用画像工学会大会予稿集42回   122 - 123   2023年7月

     詳細を見る

    記述言語:日本語   出版者・発行元:(一社)日本医用画像工学会  

    本研究の目的は,上皮成長因子受容体(EGFR)のチロシンキナーゼ阻害剤(TKI)治療を行う非小細胞肺がん(NSCLC)患者における腫瘍成長の経時変化予測モデルを構築することである.TKI治療を受けたEGFR陽性NSCLC患者26名を選択し,治療前後のCT画像における肉眼的腫瘍体積の輪郭を抽出した.各患者の腫瘍細胞数は輪郭抽出を行ったCT画像から求めた腫瘍体積に腫瘍細胞密度を乗じることで算出し,参考値として使用した.最後に,TKIに対する腫瘍の増減を表現する微分方程式モデルを構築し,パラメータを最適化することで腫瘍の経時変化の軌跡を推定した.本研究で構築したモデルは,平均絶対パーセント誤差(MAPE)とスピアマンの相関係数(SCC)で評価し平均値はそれぞれ7.50%,0.918であった.先行研究のモデルの結果(MAPE:11.1%,SCC:0.913)と比較してより腫瘍の経時変化を表現できる可能性がある.本研究のモデルは,EGFR-TKIを受けているNSCLC患者に対する治療効果予測法の基礎モデルとなりうると考える.(著者抄録)

  • Kenta Ninomiya, Hidetaka Arimura, Kentaro Tanaka, Wai Yee Chan, Yutaro Kabata, Shinichi Mizuno, Nadia Fareeda Muhammad Gowdh, Nur Adura Yaakup, Chong-Kin Liam, Chee-Shee Chai, Kwan Hoong Ng .  Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients .  Computer Methods and Programs in Biomedicine   107544 - 107544   2023年4月査読

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.cmpb.2023.107544

    researchmap

  • Yutaro Kabata, Masatomo Takahashi .  One-parameter families of Legendre curves and plane line congruences .  MATHEMATISCHE NACHRICHTEN295 ( 8 ) 1533 - 1561   2022年8月査読

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1002/mana.201900327

    Web of Science

    researchmap

  • Yutaro Kabata, Kentaro Saji .  Criteria for sharksfin and deltoid singularities from the plane into the plane and their applications .  BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY63 ( 4 ) 763 - 774   2021年10月査読

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1007/s13366-021-00606-y

    Web of Science

    researchmap

▼全件表示

書籍等出版物

MISC

講演・口頭発表等

  • 加葉田 雄太朗 .  ぐにゃぐにゃと幾何 .  Intersection of Pure Mathematics and Applied Mathematics  2024年12月  招待

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • 加葉田雄太朗 .  ああカスプ (Oh cusp!) -服のしわから微分方程式の分岐まで- .  Nagasaki clock seminar  2022年10月  招待

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Surface parametrization for manufacturing by principal curvature integral .  ICIAM 2023  2023年8月 

     詳細を見る

  • Singularities in bivariate normal mixtures .  8th International Workshop on Singularities in Geometry and Applications - València VIII  2025年6月 

     詳細を見る

    会議種別:ポスター発表  

    researchmap

  • Yutaro Kabata .  Singularities in bivariate normal mixture .  Japanese Australian workshop on Real and Complex Singularities  2024年11月 

     詳細を見る

  • Yutaro Kabata .  Several extensions of Koenderink's formula .  MSJSI  2022年11月 

     詳細を見る

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • Yutaro Kabata, Naomichi Nakajima .  Ohmoto's Contributions to Applied Singularity Theory .  8th International Workshop on Singularities in Geometry and Applications - València VIII  2025年7月  招待

     詳細を見る

  • Yutaro Kabata .  Local geometry of surfaces at parabolic points .  Singularity theory and its applications  2022年3月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • 本多修平, 加葉田雄太朗 .  Intensity distributionの特異点とその普遍性 .  第52回画像電子学会年次大会  2024年8月 

     詳細を見る

  • 長井 万恵, 鈴木 裕之, 佐藤 宏征, 加葉田 雄太朗, 折笠 秀樹, 岩崎 学, 井手野 由季, 丸岡 奈穂, 清水 里美, 林 邦彦 .  疫学研究における既存調査票の光学文字認識の精度検証と展望 .  日本公衆衛生学会総会抄録集  2023年10月  日本公衆衛生学会

     詳細を見る

    記述言語:日本語  

  • Le Quoc C., Arimura Hidetaka, Kodama Takumi, Kabata Yutaro .  CT画像に基づく肺がん患者に対するパーシステントホモロジー所見の再現性の検討(Investigation of Repeatability of Persistent Homology Features for Patients with Lung Cancer Based on Computed Tomography Images) .  日本放射線技術学会総会学術大会予稿集  2023年3月  (公社)日本放射線技術学会

     詳細を見る

    記述言語:英語  

  • 加葉田雄太朗 .  そこにあるはずの特異点を求めて .  計算技術による学際的統計解析ワークショップ  2025年1月  招待

     詳細を見る

  • 加葉田雄太朗 .  特異点論からの輪郭研究 .  3次元画像コンファレンス  2022年7月 

     詳細を見る

    会議種別:ポスター発表  

    researchmap

  • 加葉田雄太朗 .  曲面上の曲線の射影の微分幾何 .  京都産業大学数理科学科談話会  2022年11月  招待

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • 加葉田雄太朗 .  曲面上のガウス写像と直交射影,それぞれの特異点の関係について .  金沢創発数理セミナー  2022年7月 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • 加葉田雄太朗 .  曲面とその射影像の局所幾何学 .  接触構造、特異点、微分方程式及びその周辺  2021年1月  招待

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(招待・特別)  

    researchmap

  • 多目的最適化問題の幾何学と混合分布 .  評価のOR 第101回研究会  2023年9月  招待

     詳細を見る

  • 加葉田雄太朗 .  多目的最適化問題の幾何とその応用 .  統計連合大会  2022年9月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • 内田誠一, 加葉田雄太朗 .  多目的最適化問題の一意解のための特異点論応用(第2報) .  MIRU2023  2023年7月 

     詳細を見る

  • 内田誠一, 加葉田雄太朗 .  多目的最適化問題の一意解のための特異点論応用(第3報) .  MIRU2024  2024年8月 

     詳細を見る

  • 内田誠一, 加葉田雄太朗 .  多目的最適化問題の一意解のための特異点論応用 .  MIRU2022  2022年7月 

     詳細を見る

    会議種別:ポスター発表  

    researchmap

  • 写像の観点からの 混合正規分布の峰の研究 .  統計連合大会  2023年9月  招待

     詳細を見る

  • 加葉田雄太朗 .  カタストロフモデルと 統計・データサイエンス .  統計エキスパート自由セミナー  2022年12月 

     詳細を見る

    会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    researchmap

  • 加葉田雄太朗 .  また見つかった,何が,特異点が, データと溶け合う幾何学が .  長崎大学情報データ科学部コロキウム  2022年5月 

     詳細を見る

    会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    researchmap

▼全件表示

受賞

  • 大学統計教員育成研修 所長賞

    2023年9月   統計数理研究所  

    加葉田雄太朗

     詳細を見る

共同研究・競争的資金等の研究

  • 特異点論の観点からの曲線族の研究

    研究課題/領域番号:25K00208  2025年4月 - 2030年3月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    加葉田 雄太朗

      詳細を見る

    配分額:4550000円 ( 直接経費:3500000円 、 間接経費:1050000円 )

    researchmap

  • 時間生物学と微分幾何学の融合による波形データ解析

    研究課題/領域番号:25H01485  2025年4月 - 2027年3月

    日本学術振興会  科学研究費助成事業  学術変革領域研究(A)

    加葉田 雄太朗

      詳細を見る

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    researchmap

  • 「逆」多目的最適化による創造目的の解明

    研究課題/領域番号:24K22308  2024年6月 - 2026年3月

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

    内田 誠一, 加葉田 雄太朗

      詳細を見る

    配分額:6500000円 ( 直接経費:5000000円 、 間接経費:1500000円 )

    researchmap

  • 時空間分割放射線治療の医数学的研究と治療計画アルゴリズムの開発研究

    研究課題/領域番号:24K10903  2024年4月 - 2029年3月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    白土 博樹, 小野寺 康仁, 福永 久典, 水田 正弘, 加葉田 雄太朗, 深作 亮也, 西岡 蒼一郎, 小亀 翔揮

      詳細を見る

    配分額:4550000円 ( 直接経費:3500000円 、 間接経費:1050000円 )

    researchmap

  • 空間分割照射後の精巣組織代償効果の解明・制御と数理モデル開発

    研究課題/領域番号:24K03079  2024年4月 - 2027年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    福永 久典, 横谷 明徳, 白土 博樹, 深作 亮也, 加葉田 雄太朗, 水田 正弘, 小野寺 康仁

      詳細を見る

    配分額:18460000円 ( 直接経費:14200000円 、 間接経費:4260000円 )

    researchmap

  • 医療における多目的決定構造の数理的解明

    研究課題/領域番号:21K18312  2021年7月 - 2024年3月

    日本学術振興会  科学研究費助成事業 挑戦的研究(開拓)  挑戦的研究(開拓)

    内田 誠一, 中島 直樹, 加葉田 雄太朗

      詳細を見る

    配分額:26000000円 ( 直接経費:20000000円 、 間接経費:6000000円 )

    初年度(2021年度)は,理論面とデータ収集面の2面から「医療における多目的最適化」問題の研究を進めた.
    理論面については,その基盤となっている「多目的最適化問題の解集合であるパレートフロントの特異点」について,第一歩となるべく理論的成果を得た.より具体的には,2つの2次関数を目的関数とした場合,そのパレートフロントの頂点(曲率を用いた特異点の一つ)が解析的に決定できることを示し,さらにこの頂点が変数の摂動に対して最も不感になり得ることも示した.単純な問題設定ではあるが,これにより特異点を用いることでパレートフロントから適切な性質を持った(すなわち選択基準を説明可能な)解を選出できることが示された.さらに,2つの2次関数が自然な形で目的関数となる応用例として「Ridge回帰」を採り上げ,正則化項とのバランスパラメータのチューニングをしなくても,前記の考えにより一意に解を決定できることを示した.さらには,3以上の2次関数を目的関数とするケースにおいても全く同様の議論ができることも示した.さらに,2次関数の代わりに(より応用範囲が広いと考えられる)正規分布を目的関数とした場合についても,パレートフロントの曲率を用いた議論が可能であることも示した.
    データ収集面については,クリニカルパスデータの収集を病院で進めている.特に,上記の理論が連続値データを中心に進めていることから,医療データのうちで(実施した・しない,などのバイナリではなく)連続値としての扱いが可能なデータについて,その入手および利用が可能となるよう手続きを進めている.

    researchmap

  • 写像の特異点論からの曲面の研究とその応用

    研究課題/領域番号:20K14312  2020年4月 - 2024年3月

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    加葉田 雄太朗

      詳細を見る

    配分額:3900000円 ( 直接経費:3000000円 、 間接経費:900000円 )

    [A. 曲線や曲面の微分幾何学的研究] 曲線や曲面の局所微分幾何学的な性質の研究は古典的な題材であるとともに、可積分系との関連や視覚の数理など他分野への応用という観点からも重要である。一方、曲線や曲面には退化した点が自然に現れ、そのような点での性質の研究は困難であることが多い。本研究では、曲線や曲面の退化点における適切な標準形や接触モデル部分多様体を考えるという写像の特異点論的アプローチを取ることで、曲線や曲面の新しい微分幾何学的性質を発見している。例えば共同研究によって次のような研究を行なった。(A-1)空間内の線織面の局所的な標準形を決定しflecnodal curveなどの幾何的に重要な曲線を解析した。(A-2)空間内の曲面の放物点における適切なモデル部分多様体を発見し、その接触の仕方による曲面の局所的な分類を与えた。
    [B. 曲線や曲面の射影に関する研究] 直行射影に関して空間内の曲線や曲面とその射影像の関係を研究している。例えば共同研究によって次の研究を行なった。(B-1)曲面の直行射影にはしばしば複雑な特異点が現れその曲面の幾何的な性質による特徴づけはこれまで困難であったが、我々は上記(A-2)で得られた曲面の放物点における新しい幾何学的性質を用いることでいくつかの特異点に対して完全な特徴づけを得た。(B-2)平面から平面への写像の余階数2の特異点の判定法を開発し、それを応用してクロスキャップ曲面の射影像の性質を解析した。
    上記の研究成果の1部をオンライ研究集会で発表している。また、本研究の視覚科学など多分野への応用を実現するために、CG、CVなど様々な分野の研究者に積極的にアポイントメントを取り情報交換を行っている。

    researchmap

  • 包括的グレブナー基底系を用いた特異点分類の自動化

    研究課題/領域番号:19K03484  2019年4月 - 2022年3月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    寺本 央, 鍋島 克輔, 加葉田 雄太朗, 泉屋 周一

      詳細を見る

    配分額:4290000円 ( 直接経費:3300000円 、 間接経費:990000円 )

    2019年度に二つの異なる局所環上の加群の和として書ける混合加群に対するグレブナー(標準)基底を計算するためのアルゴリズムおよびそのパラメータ付きの混合加群への拡張である包括的標準系の概念及びその計算アルゴリズムを与え、2020年度7月に数式処理のトップカンファレンスであるISSAC2020で発表した。
    <BR>
    特異点論におけるA同値やKB同値といった同値関係における接空間は以上のような二つの異なる局所環上の加群の和として書ける構造を持っているが、コンピュータービジョンへの応用で出てくる同値関係、多目的最適化の文脈で自然な同値関係として出てくるパレートA同値、発散図式等の同値関係のもとではそれらの接空間は三つ以上の異なる局所環上の加群の和となるため、それらの同値関係の下特異点の自動分類をするためにはそのような混合加群に関するグレブナー(標準)基底の概念及びアルゴリズムが必要である。2020年度は一般の混合加群に対するグレブナー(標準)基底の概念を定義し、それを計算するためのアルゴリズムを構築した。また、混合加群がパラメータに依存している場合にも使えるよう対応する包括的標準系の概念及びアルゴリズムを構築した。また、このアルゴリズムをもちいて、Mancini et al (2002)によるR <- R^2 -> R型の発散図式の形式的余次元が有限な写像芽の分類のいくつかの結果を再現できることを確認した。また、Matherの補題の条件を接空間の標準基底を用いて半自動的にチェックするためのアルゴリズムも考案し、k-jetの分類に使えることをいくつかの例で検証した。この結果は研究集会【幾何や自然科学に現れる特異点】【2月17日~19日】で報告し、現在Journal of Symbolic Computationに投稿中である。

    researchmap

▼全件表示

 

担当経験のある授業科目

  • 大学数学入門

    2024年4月
    -
    現在

     詳細を見る

  • データサイエンス概論

    2022年4月
    -
    現在

     詳細を見る

  • 統計学概論

    2022年4月
    -
    現在
    機関名:長崎大学

     詳細を見る

  • 線形代数学I

    機関名:北海学園大学

     詳細を見る

  • 微分積分学II

    機関名:長崎大学

     詳細を見る